The Duality Theorem for Min - Max Functionsst
نویسنده
چکیده
The set of min-max functions F : R n ! R n is the least set containing coordinate substitutions and translations and closed under pointwise max, min, and function composition. The Duality Conjecture asserts that the trajectories of a min-max function, considered as a dynamical system, have a linear growth rate (cycle time) and shows how this can be calculated through a representation of F as an innmum of max-plus linear functions. We prove the conjecture using an analogue of Howard's policy improvement scheme, carried out in a lattice ordered group of germs of aane functions at innnity. The methods yield an eecient algorithm for computing cycle times. R esum e. L'ensemble des fonctions min-max F : R n ! R n est le plus petit ensemble de fonctions qui contient les substitutions de coordonn ees et les translations, et qui est stable par les op erations min et max (point par point), ainsi que par composition. La Conjecture de Dualit e aarme que les trajectoires d'un syst eme r ecurrent gouvern e par une dynamique min-max ont un taux de croissance lin eaire (temps de cycle), qui se calcule a partir d'une repr esentation de F comme innmum de fonctions max-plus lin eaires. Nous montrons cette conjecture en utilisant une it eration sur les politiques a la Howard, a valeurs dans un groupe r eticul e de germes de fonctions aanes a l'innni. On a ainsi un algorithme eecace pour calculer le temps de cycle. Version franc aise abr eg ee Nous munissons R n et l'ensemble des fonctions R n ! R n de l'ordre partiel usuel (composante par com-posante). Les bornes sup et inf sont not ees _ et ^, respectivement. Nous appellerons substitution une application F : R n ! R n de la forme F(x) i = x (i) ou est une transformation quelconque de f1; : : : ; ng (peut-^ etre non bijective). Une translation est une application de la forme: R n ! R n , x 7 ! x + u, avec u 2 R n. L'ensemble des fonctions min-max est le plus petit ensemble de fonctions R n ! R n contenant les substitutions et les translations, et qui est stable par les op erations binaires _; ^ et la composition. Les fonctions min-max comprennent les applications max-plus lin eaires, (cf. 4, 1, 15, 7]), qui sont de la forme …
منابع مشابه
Surrogate duality for robust optimization
Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min-max duality theorems for robust convex optimization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min-max duality, and show some examples at which such duality result...
متن کاملCsc5160: Combinatorial Optimization and Approximation Algorithms Topic: Min-max Theorem
In this lecture, we show the applications of the strong duality theorem, and discuss how to obtain min-max theorems and combinatorial algorithms from linear programming. We first introduce the 2 player, zero-sum game and show that this can be solved by minimax theorem and we also prove the minimax theorem by the LP-duality theorem. After that, we introduce some applications of minimax theorem, ...
متن کاملFolder complexes and multiflow combinatorial dualities By Hiroshi
In multiflow maximization problems, there are several combinatorial duality relations, such as Ford-Fulkerson’s max-flow min-cut theorem for single commodity flows, Hu’s max-biflow min-cut theorem for two-commodity flows, Lovász-Cherkassky duality theorem for free multiflows, and so on. In this paper, we provide a unified framework for such multiflow combinatorial dualities by using the notion ...
متن کاملFolder Complexes and Multiflow Combinatorial Dualities
In multiflow maximization problems, there are several combinatorial duality relations, such as Ford-Fulkerson’s max-flow min-cut theorem for single commodity flows, Hu’s max-biflow min-cut theorem for two-commodity flows, Lovász-Cherkassky duality theorem for free multiflows, and so on. In this paper, we provide a unified framework for such multiflow combinatorial dualities by using the notion ...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کامل